总而言之,在数字化时代下,大数据治理对企业数据建设的重要性不言而喻,然而实现的困难有时也让人望而却步,因此选择合适的技术和工具会达到事半功倍的效果。帆软FineDataLink——中国领先的低代码/高时效数据集成产品,能过为企业提供一站式的数据服务,通过快速连接、高时效融合多种数据,提供低代码Data API敏捷发布平台,帮助企业解决数据孤岛难题,有效提升企业数据价值。
作者:finedatalink
发布时间:2023.8.22
阅读次数:758 次浏览
首先,数据仓库(Data Warehouse),也称为企业数据仓库,它是一个面向主题的、集成的、相对稳定的、反映历史变化的实时大屏数据集合存储系统,它将来自不同来源的结构化数据聚合起来,用于业务智能领域的比较和分析,企业数据仓库是包含多种数据的实时大屏数据存储库,并且是高度建模的。
首先来看一下网易数据中台架构图:
数据中台架构通过对企业内外部多源异构的数据采集、治理、建模、分析和应用,使数据对内优化管理提高业务价值,对外进行数据合作让业务价值得到释放,使之成为企业数据资产管理中枢。数据中台建立后,会形成数据API服务,为企业和客户提供高效各种数据服务。
数据中台架构对一个企业的实时大屏数据数字化转型和可持续发展起着至关重要的作用。数据中台为解耦而生,企业建设数据中台的最大意义就是应用与数据之间的解藕,这样企业就可以不受限制地按需构建满足业务需求的数据应用。
企业数据仓库和传统的数据平台,其出发点为一个支撑性的技术系统,即一定要先考虑我具有什么数据,然后我才能干什么,因此特别强调数据质量和元数据管理;而数据中台的第一出发点不是数据而是业务,一开始不用看你系统里面有什么数据,而是去解决你的业务问题需要什么样的数据服务。
在具体的技术处理环节,二者也有明显不同,数据的预处理流程正在从传统的ETL结构向ELT结构转变。传统的数据仓库集成处理架构是ETL结构,这是构建数据仓库的重要一环,即用户从数据源抽取出所需的数据,经过数据清洗,将数据加载到企业数据仓库中去。而大数据背景下的架构体系是ELT结构,其根据上层的应用需求,随时从数据中台中抽取想要的原始数据进行建模分析。
总而言之,在数字化时代下,大数据治理对企业数据建设的重要性不言而喻,然而实现的困难有时也让人望而却步,因此选择合适的技术和工具会达到事半功倍的效果。帆软FineDataLink——中国领先的低代码/高时效数据集成产品,能过为企业提供一站式的数据服务,通过快速连接、高时效融合多种数据,提供低代码Data API敏捷发布平台,帮助企业解决数据孤岛难题,有效提升企业数据价值。
数据集成平台产品更多介绍:www.finedatalink.com
上一篇: 如何建立数据仓库?这里有最详细的建立数仓指南!下一篇: 零基础如何学习搭建数据仓库